46 research outputs found

    Solving integral equations in η→3π\eta\to 3\pi

    Full text link
    A dispersive analysis of η→3π\eta\to 3\pi decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for ω→3π\omega\to 3\pi.Comment: 11 pages, 10 Figures. Version accepted for publication in EPJC. The ancillary files contain an updated set of fundamental solutions. The numerical differences to the former set are tiny, see the READMEv2 file for detail

    Truncated Schwinger-Dyson Equations and Gauge Covariance in QED3

    Full text link
    We study the Landau-Khalatnikov-Fradkin transformations (LKFT) in momentum space for the dynamically generated mass function in QED3. Starting from the Landau gauge results in the rainbow approximation, we construct solutions in other covariant gauges. We confirm that the chiral condensate is gauge invariant as the structure of the LKFT predicts. We also check that the gauge dependence of the constituent fermion mass is considerably reduced as compared to the one obtained directly by solving SDE.Comment: 17 pages, 11 figures. v3. Improved and Expanded. To appear in Few Body System

    Isgur-Wise function in a QCD inspired potential model with confinement as parent in the Variationally Improved Perturbation Theory (VIPT)

    Full text link
    We have recently reported the calculation of slope and curvature of Isgur-Wise function based on Variationally Improved Perturbation Theory (VIPT) in a QCD inspired potential model. In that work, Coulombic potential was taken as the parent while the linear one as the perturbation.In this work, we choose the linear one as the parent with Coulombic one as the perturbation and see the consequences. Keywords: VIPT,Isgur-Wise function, charge radii and convexity pa- rameter
    corecore